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Solitons in an isolated helix chain

P. L. Christiansen, A. V. Zolotaryuk,* and A. V. Savin,†

Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
~Received 16 December 1996!

A molecular chain with helix structure has been investigated in the three-dimensional space in the case when
it is considered as an isolated object~not subjected to any substrate potential!. Each of the chain molecules is
allowed to move in three dimensions, and intermolecular interactions~bonds! are assumed to be of the pair
type and to have spherical symmetry. The helix structure is provided by the first- and second-neighbor inter-
molecular bonds as well as by the nearest-neighbor interactions along the longitudinal direction of the chain,
stabilizing the helix backbone which can be considered as a generalization of the well-known one-dimensional
Fermi-Pasta-Ulam model to include transverse degrees of freedom of the chain molecules. In the particular
case of thea-helix molecular chain, the intermolecular interactions involved into the model are the point-point
bonds connecting the first-, second-, and third-nearest neighbors. The set of nonlinear field equations with
respect to the longitudinal and transverse~torsional and radial! displacements of the chain molecules has been
derived and treated. Stable nontopological soliton solutions which describe supersonic pulses of longitudinal
compression propagating together with localized transverse thickening~bulge! and torsional stretching~un-
twisting! have been found. The stability properties of these~three-component! soliton solutions have been
studied by using numerical techniques developed for seeking solitary-wave solutions in complex molecular
systems.@S1063-651X~97!04307-9#

PACS number~s!: 87.15.2v, 63.20.Ry, 63.20.Pw
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I. INTRODUCTION

One-dimensional~1D! nonlinear ~anharmonic! lattices,
the studies of which were originated in a series of pioneer
works @1–4#, are usually considered as the basic models
describe transport properties in biomolecules@5,6#. Any in-
termolecular potential in such a 1D lattice~chain! has a hard-
ening ~positive! anharmonicity. This is a conventional typ
of anharmonicity in nonlinear lattices and its physical me
ing is as follows. When neighboring atoms~or molecules! of
the chain are displaced from their equilibrium positions,
repulsion force between them becomes stronger than the
monic approximation of this interaction. In other words,
hardening anharmonic force contributes to this repuls
with the positive sign. As a result of the presence of suc
positive anharmonicity, dynamically stable solitary wav
can propagate along the chain with supersonic veloci
@2–4#. These nonlinear collective excitations are referred
as lattice~or acoustic! solitons. For some particular choice
of the intermolecular potential, like Toda, Boussinesq, e
the solitons are named accordingly.

In applications to real biological quasi-one-dimension
objects @7–9#, the standard 1D Fermi-Pasta-Ulam~FPU!
model @1# should be generalized in order to include tran
verse motions of chain molecules. However, as shown
numerical simulations@10,11#, solitonic excitations in anhar
monic chains are extremely sensitive to their transverse
turbations and therefore the problem of soliton propaga
in 3D objects is far from fully understood. Consequently, t
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question on the existence and stability of moving solita
waves along realistic biomolecules, considered as 3D
jects, is of great interest. In particular, investigations of a
harmonic chains, atoms, or molecules which have transv
degrees of freedom@10,12–17# should be mentioned. On th
other hand, in some cases transverse displacements of
ecules are considered the most important motions in b
physical processes. Thus, in the DNA molecule, the stre
ing of base pairs in the transverse direction determines
fundamental mechanism of the denaturation of this molec
The Peyrard-Bishop model of DNA melting@18–20# has just
been formulated in terms of only transverse degrees of
complementary strands. Although the DNA molecule is co
sidered in this approach as an isolated object, the mode
tually describes the 1D dynamics of chain molecules in
effective substrate potential.

The present paper aims to findpure solitary-wave solu-
tions for a helix backbone, the molecules of which are
lowed to move in 3D space. All intermolecular interactio
are assumed to be of the point-point type. The backbon
considered as anisolatedobject which is not subjected to
any substrate potential. Since only point-point intermolecu
interactions are involved, the helix backbone will have
single stabilized ground state in the case if, besides
nearest-neighbor coupling, at leasttwo other bonds are taken
into account. For instance, in this paper we consider inte
tions between the first, second, and nearest neighbors in
longitudinal directions. Particularly, for thea-helix macro-
molecule, these interactions are between the first, sec
and third neighbors. In any case of a 3D helix backbo
three intermolecular interactions is the minimal number
bonds required to have a regular structure of the backb
when it is found in an undistorted~ground! state. As shown
in Ref. @21#, in the 2D case, when the helix backbone
reduced to a planar zigzag chain,two intermolecular interac-
,
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878 56P. L. CHRISTIANSEN, A. V. ZOLOTARYUK, AND A. V. SAVIN
tions~between the first and second neighbors! are a sufficient
number of bonds to create a stable zigzag structure. Note
in the Olsen-Lomdahl-Kerr~OLK! model for thea helix, the
two intermolecular interactions~between the first neighbor
and the nearest molecules in the longitudinal direction! is not
a sufficient number to fix a stable ground state. Any pair
geometric parameters describing the helix structure can
given in terms of the backbone radius, and therefore the h
geometry is arbitrarily scaled by this parameter. Therefo
our generalized version of the OLK model may be cons
ered as the most simple theoretical model of an isolated
lecular chain corresponding to realistic situations in biom
lecular sciences.

Finally, it should be emphasized that even in the c
where molecules are assumed to be coupled by harm
forces, an effective anharmonicity appears because of
geometry of the system. For breatherlike solutions, the
fects of such a geometric nonlinearity have previously b
investigated by Cadet@22#.

The rest of the paper is organized as follows. In Sec. II
describe a helix model with first- and second-neighbor in
actions, including the nearest-neighbor interactions~soft hy-
drogen bonds! along the longitudinal direction of the back
bone. In this section, we describe the geometry of the h
structure, and derive the basic set of three-component e
tions of motion. The reduction of these equations to low
dimensions is briefly discussed there. In Sec. III, we stu
the small-amplitude linear limit of the equations of motio
In Sec. IV, we generalize a numerical method develop
previously for low dimensions to seek pure solitary-wa
solutions of stationary profile in our 3D model. These so
tions are chosen in Sec. V as initial conditions for simu
tions of the equations of motion. The comparison of the i
tial and final soliton profiles has been carried out there. T
concluding remarks on the results of the present paper
outlined in Sec. VI.

II. A HELIX MODEL

Let molecules~e.g., amino acids! be linked together in a
molecular~polypeptide! chain, as illustrated in Fig. 1, by th
first-, second-, andn-neighbor forces. The forces between t
nth and (n1n)th molecules form a soft~hydrogen! bond in
the longitudinal direction of the helix backbone, and the
fore the integern ~the number of spines! is determined from
the condition that then-neighboring bond has to be the sho
est distance in this direction. This chain has a 3D heli
structure, and its molecules are allowed to move in all th
(X,Y,Z) directions.

A. Sets of geometric parameters for the description
of helix structure

The geometry of a regular helix backbone, when its m
ecules are found in equilibrium positions, can be uniqu
given by a set of three parameters. To this end, it is con
nient to define the positions of the vertices of the helix ba
bone, using the cylindrical system of coordinates. In t
frame the helix structure can be described by~i! the radius
R0 of the cylinder which spans the helix backbone,~ii ! the
constant anglef in the XY plane which is formed by eac
three successive chain molecules~this angle is the projection
at
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of the valence anglec between the nearest valence bon
onto theXY plane!, and~iii ! the heightDz which measures
the Z projection of the distance between the neare
neighboring molecules in the chain. Then the radius vec
of each molecule of the helix backbone is given by

Rn5R0„cos~nf!,sin~nf!,nh…, n50,61,..., ~1!

whereh5Dz/R0 . Whenf.2p/n(f,2p/n), we refer to
such a chain as a right~left! helix.

Alternatively, the helix can be described by three oth
parameters, namely, by the distances between~i! the nearest
molecules (D1), ~ii ! the second neighbors (D2), and~iii ! the
nth and (n1n)th molecules (Dn). The length of the vector

ajn5~Rn1 j2Rn!/R05„cos@~n1 j !f#2cos~nf!,

sin@~n1 j !f#2sin~nf!,

jh…, ~2!

which connects thenth and (n1 j )th vertices of the regular
helix backbone, does not depend on the number of the c
site:

uajnu5A2@12cos~ jf!#1 j 2h2[aj5Dj /R0 , j51,2,n.
~3!

Using the expression for the distance between thenth and
(n1 j )th vertices of the backbone~3!, we find the equation
for the anglef:

FIG. 1. A fragment of the helix backbone consisting of 11 m
ecules. The geometry of the backbone is in accordance with
structure ofa-helix, i.e., n53 andf5100°. The intermolecular
interactionsUj , j51,2,3, are schematically shown by the sprin
of different diameters. The thicker springs correspond to stron
stiffness of the bonds.
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56 879SOLITONS IN AN ISOLATED HELIX CHAIN
324 cosf1cos~2f!

n2212n2 cosf1cos~nf!
5

4a1
22a2

2

n2a1
22an

2 . ~4!

When Eq.~4! has been solved, we obtain

R05
A4D1

22D2
2

4 sin2~f/2!
, Dz5

AD2
2/42D1

2 cos2~f/2!

sin~f/2!
. ~5!

Thus there is a one-to-one correspondence between the
sets of parameters:$R0 ,f,h% and$D1 ,D2 ,Dn%.

The third set of parameters which may also be adopted
the description of the helix geometry is$D1 ,c,Dn%, wherec
is the valence angle between the nearest-neighboring bo
The relation between the parameter sets$R0 ,f,h% and
$D1 ,c,Dn% is determined as follows. First, we find the equ
tion for the anglef:

12cos~nf!

12cosf
1S n22

an
2

a1
2D 12cosf

11cosc
5n2. ~6!

Then the remainder two parametersR0 andh are given by

R05
D1 cos~c/2!

12cosf
, Dz5D1S ucosf1coscu

12cosf D 1/2. ~7!

Note that the inequality

cosf1cosc,0 ~8!

is always valid if the integern.1.
Since the regular helix structure is given uniquely

threegeometric parameters, we need to consider three ty
of intermolecular interactions which stabilize this structu
One of these has to be introduced, as usual, between
nearest neighbors along the helix chain and it may be
ferred to as valence bonds. The second type of interact
couples the molecules situated along the longitudinal dir
tion of the chain as in the OLK model@10#. It is responsible
for the secondary structure of the chain macromolecule. T
in protein these interactions are called hydrogen bon
However, as shown above, in order to have a stable h
backbone when the intermolecular interactions are sph
cally symmetric~i.e., if only point-point central interaction
are assumed!, besides the interactions between the nea
neighbors along the helix backbone and along the longitu
nal direction, we have to consider some third type of int
molecular bonds. For instance, it can be the three-par
interaction fixing a certain valence anglec. The simplest and
most straightforward way to take this fact into account is
consider the interaction between thenth and (n12)th mol-
ecules, i.e., the second-neighbor coupling. In this resp
such a helix will be the most simple generalization of t
FPU chain considered as a 3D object.

Now we need to discuss the number of spinesn. This
integer should be chosen in such a way that the length
longitudinal~hydrogen! bonds would be the shortest distan
between thenth and (n1n)th molecules. Using the firs
equation in Eq.~7!, we exclude the variablea1 in Eq. ~6!,
and find the relation
wo
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2
512cos~nf!2n2

~cosf1cosc!~12cosf!

11cosc
, ~9!

which gives the dependence of the distancean on the integer
n. The minimization of the distancean5an(f,c) with re-
spect to all integersn>3 at given values of the anglesf and
c yields the required integern. Thus, for thea-helix macro-
molecule we havef5100° andc5110°. In this case, the
minimal distancean occurs atn53.

In the case of three spines~e.g., in protein!, whenn53, it
is interesting to consider the equidistance case w
D15D25D3 . In this particular case Eqs.~3! and~4! can be
solved explicitly. As a result, we find the anglef:sin(f/2)
5A5/6. The other two parameters are given bya15a2
5a3510/3) andh5 1

3A10/3. Since the anglef exceeds the
value 2p/3, this particular case corresponds to a right he

B. Equations of motion

The total Hamiltonian of the described helix backbo
with three types of interactions, which link the first and se
ond neighbors as well as the nearest neighbors along
longitudinal direction of the chain, can be written in the for

H5(
n

F12 M ~ ẋn
21 ẏn

21 żn
2!1KR0

2 (
j51,2,n

Uj~r jn!G ~10!

whereM is the mass of chain molecules,K is the character-
istic stiffness of the intermolecular forces, the coordina
xn , yn , andzn describe the displacements of thenth mol-
ecule from its equilibrium position given in theXYZ frame
by the radius vector~1!, and the dots denote the differentia
tion with respect to timet. Each of the three functions
Uj (r jn)’s, which are assumed, in general, to be differe
describes an intermolecular interaction between the nea
neighboring (j51), second-neighboring (j52), and ~n!-
neighboring (j5n) molecules. These interactions are a
sumed to depend only on the dimensionless intermolec
distancesr jn5Rjn /R0 whereRjn is the distance between th
nth and (n1 j )th molecules. The intermolecular potentia
Uj (r ), j51,2,n, are normalized byUj (aj )50, Uj8(aj )50,
and they have the standard form, like the Lennard-Jones
teraction. In order to deal with both the harmonic appro
mation and with more realistic potentials, and to have a
rameter of intermolecular nonlinearity~anharmonicity!, we
will use the Morse potentials

Uj~r !5 1
2 ~k j /g j

2!$12exp@2g j~r2aj !#%
2

5 1
2k j~r2aj !

2@12g j~r2aj !1•••#, j51,2,n,

~11!

where k j5Kj /K5Uj9(aj ) is the dimensionless stiffnes
constant of the bond connecting thenth and (n1 j )th mol-
ecules, whileg j is the anharmonicity parameter of this bon
In the limit g j→0, potentials~11! describe the harmonic ap
proximation.

For the dimensionless description it is convenient to
troduce the normalized time

t5v0t, v05AK/M , ~12!
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and the dimensionless vectorsqn’s defined by

qn~q1n ,q2n ,q3n!5Rn /R01vn ,

vn5~v1n ,v2n ,v3n!5~xn ,yn ,zn!/R0 . ~13!

Then the distancesr jn are represented as

r jn5uqn1 j2qnu ~14!

and the Hamiltonian~10! can be rewritten in the dimension
less form. Given in the units ofKR0

2, it takes the form

H5(
n

F12 S dqndt D 21(
j
U j~ uqn1 j2qnu!G . ~15!

The equations of motion which correspond to the Ham
tonian ~15! take the following form:

d2qn
dt2

5(
j

@Wj~r jn!~qn1 j2qn!2Wj~r j ,n2 j !~qn2qn2 j !#,

~16!

where the functionsWj (r jn) are defined by

Wj~r jn!5
Uj8~r jn!

r jn
. ~17!

In Eq. ~16! and in the following, the summation overj
51,2,n is not indicated explicitly, except for the particula
cases when the number of spinesn is specified.

C. Local frame of coordinates

It is more natural to describe the displacements of m
ecules from the equilibrium positions locally at each m
ecule. More precisely, at each equilibrium position of t
nth molecule, we consider the normal and tangent~to the
circle in theXY plane, as shown in Fig. 2! components of the
displacement vectorvn @see Eqs.~13!#. We denote this vecto
in the local system byun5$u1n ,u2n ,u3n%, whereu1n and
u2n are the normal and tangent projections of the vec
un , respectively. The longitudinal coordinate is not tran
formed, so thatu3n[v3n . Therefore, both the systems o
coordinates are related by the rotational transformationTn
defined by

FIG. 2. The frame of local normal and tangent coordinates in
XY plane.
-

l-
-

r
-

Tnvn5un , Tn5S cos~nf!

2sin~nf!

0

sin~nf!

cos~nf!

0

0
0
1
D . ~18!

The set of the unitary operatorsTn’s forms a group:TmTn
5Tm1n , with the unityT05I , whereI is the unity operator.

The substitution of the expressionqn5Rn /R01Tn
21un

@see Eqs.~13! and ~18!# into the equations of motion~16!
yields

d2un
dt2

5(
j

@T j
21Fj~un ,un1 j !2Fj~un2 j ,un!#, ~19!

where the intermolecular forcesFj ’s are defined by

Fj~un ,un1 j !5Wj~r jn!~cj1un1 j2T jun!. ~20!

Here the distancer jn between thenth and (n1 j )th mol-
ecules is represented by

r jn5uajn1Tn1 j
21 un1 j2Tn

21unu, ~21!

and the constant vectorscj ’s are defined by

cj5~12cos~ jf!,sin~ jf!, jh !. ~22!

As can be seen from Eqs.~20! and ~21!, the forcesFj ’s are
not expressed in terms of the differences of the vectorsun
and un1 j because of the presence of the operatorsT j ’s in
these expressions.

D. Lower dimensions

Consider some particular cases corresponding to lo
~one and two! dimensions, e.g., takingn51 or n52. First,
we note that the equations of motion for the 1D case can
obtained from Eqs.~2! and ~17!–~22! if we put theref
52p. Particularly, we obtainajn5(0,0,jh) andTn5I . Re-
ducing to the 1D case givesvn5un5(0,0,un) and qn1 j
2qn5(0,0,r jn), wherer jn5 jh1un1 j2un . As a result, Eq.
~19! is reduced to

d2un
dt2

5(
j

@Uj8~ jh1un1 j2un!2Uj8~ jh1un2un2 j !#.

~23!

In the simplest casen51, this equation describes the sta
dard FPU model, while forj.1 we obtain the 1D generali
zation of this model including long-range intermolecular i
teractions. For the particular case of the first- and seco
neighbor interactions,n52 ( j51,2), this model has bee
extensively studied in Refs.@23,24#.

Similarly, puttingf5p, we reduce the 3D helix back
bone to a planar zigzag chain studied previously in Ref.@21#.
Indeed, in the case with the first- and second-neighbor in
actions (n52), we obtain

a1n5„2~21!n11,0,h… a2n5~0,0,2h!,

Tn5S ~21!n

0
0

0
~21!n

0

0
0
1
D . ~24!

e
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56 881SOLITONS IN AN ISOLATED HELIX CHAIN
Let un5(un,0,bn), with un(t) andbn(t) being generalized
coordinates. Then in terms of these coordinates, the first-
second-neighbor distances are

r 1n5A~21un1un11!
21~h1bn112bn!

2,

r 2n5A~un122un!
21~2h1bn122bn!

2, ~25!

respectively. The corresponding equations of motion for
lattice fieldsun(t) andbn(t) are derived immediately from
the Lagrangian

L5(
n

F12 S dundt D 21 1

2 S dbn

dt D 22 (
j51,2

Uj~r jn!G . ~26!

As was shown in Ref.@21#, these equations admit stab
two-component nontopological soliton solutions.

III. SMALL-AMPLITUDE WAVES

In the harmonic approximation for all of the intermolec
lar forces~g j→0, j51,2,n!, we obtain the linear expansio

Fj~un ,un1 j !5a j^un1 j2T jun ,cj&cj1••• , ~27!

wherea j5k j /aj
2 and ^ & denotes the inner product. Cons

quently, the linearized equations of motion take the form

d2un
dt2

5(
j

a j@^un1 j2T jun ,cj&T j
21cj

2^un2T jun2 j ,cj&cj #. ~28!

Substituting the plane wave

un5An exp@ i ~kn2Vt!# ~29!

into Eqs.~28!, we obtain the following dispersion law:

UV22c11
ic12
ic13

2 ic12
V22c22

2c23

2 ic13
2c23

V22c33
U50, ~30!

with the coefficients

c1152(
j

a j@12cos~ jf!#2@11cos~ jk !#,

c1252(
j

a j@12cos~ jf!#sin~ jf!sin~ jk !,

c1352(
j

a j~ jh !@12cos~ jf!#sin~ jk !,

~31!

c2252(
j

a j sin
2~ jf!@12cos~ jk !#,

c2352(
j

a j~ jh !sin~ jf!@12cos~ jk !#,

c3352(
j

a j~ jh !2@12cos~ jk !#.
nd

e

Explicitly, Eq. ~30! can be rewritten as

V62~c111c221c33!V
41~c11c221c11c331c22c332c12

2 2c13
2

2c23
2 !V21~c11c23

2 1c22c13
2 1c33c12

2 2c11c22c33

22c12c13c23!50. ~32!

Using the explicit form of Eqs.~30!–~32!, one can be
convinced of the existence of three nondegenerate and
negative roots of the cubic~with respect toV2! equation~32!
for all 0,k<p. In the long-wavelength limitk→0, the free
term, and the coefficient atV2 in the dispersion equation
~32! tend to zero. Therefore, two of three solutions of th
equation are acoustic branches. These twoV l(k) and
V t(k) ~see Fig. 3! correspond to the longitudinal and to
sional oscillations of the chain molecules, respectively. T
third root of Eq.~32! gives an optical branchVop(k), corre-
sponding to the transverse oscillations of molecules in
radial direction of the helix backbone. Explicitly, atk50 we
have

Vop
2 ~0!5c111c221c3354(

j
a j@12cos~ jf!#2. ~33!

The presence of two acoustic branches should result in
existence of two speeds of sound: longitudinal (v l) and tor-
sional (v t). In dimensionless form, they can be defined
the limits

sl ,t5
v l ,t
v0

5h lim
k→0

V l ,t~k!

k
, ~34!

where v05(K/M )1/2R0 is the characteristic velocity o
small-amplitude waves in the helix backbone.

For numerical computations we choose the following v
ues of the system parameters:

n53, f5100°, h51, k1510, k255, k351.
~35!

FIG. 3. The frequenciesV t ~curve 1!, V l ~curve 2!, andVop

~curve 3! against wave numberk, 0<k<p, for the chain with the
parameter set~35!.
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882 56P. L. CHRISTIANSEN, A. V. ZOLOTARYUK, AND A. V. SAVIN
In the parameter set~35!, the values for the numbern and the
angle f correspond to thea-helix protein molecule. The
stiffness constantsk1 , k2 , andk3 are related each to othe
approximately as the elasticities of the valence bond, vale
angle, and hydrogen bond. The form of all of the three d
persion curves for the values~35! is shown in Fig. 3. Atk
50, the frequencies areV l5V t50 andVop55.11. It fol-
lows from the explicit representation of the coefficients~31!
that at a certain value of the wave numberk5k0 , the free
term in Eq.~32! becomes zero. This means that, at this val
softening the torsional oscillations happens@V t(k0)50#.
For the parameter set~35! this value isk051.748. As fol-
lows from Fig. 3, the frequency spectrum of the helix cha
consists of one separate optical zone and two acoustic zo
The frequency spectrum of the torsional oscillations lies
side the frequency spectrum of the longitudinal oscillatio
Moreover, the velocity of the longitudinal soundsl53.39
significantly exceeds the speed of the torsional soundst
50.75.

IV. A SOLITON ANALYSIS

In this section we develop a numerical scheme for seek
solitary-wave solutions of the stationary profile for the ba
equations of motion~16!. This scheme can be applied if th
profile of such solutions appears to be sufficiently smoo
though varied from site to site along the chain. In order
study discreteness effects, we should use more complic
numerical techniques such as the pseudospectral method
gested by Eilbeck and Flesch@25#, later developed by Dun
canet al. @26#. When the soliton solutions have been foun
then they can be chosen as initial conditions for numer
simulations of these equations. The final profile of the vec
lattice field qn(t) obtained under the simulations at suf
ciently large timest allows us to conclude whether or not th
initial soliton profile is a stable solution of Eqs.~16!. The
main point in such a numerical approach is an appropr
choice of a discrete functional in the numerical scheme.
was shown previously@21#, such a functional can be con
structed from the corresponding Lagrangian of the syste

To accomplish the soliton analysis of the equations
motion ~16!, we treat them in the cylindrical system of co
ordinates. Therefore, we write

q1n5~11hn!cos~nf1un!,

q2n5~11hn!sin~nf1un!,

q3n5nh1bn ~36!

wherehn describes the radial displacement of thenth mol-
ecule from the cylinder surface which spans the helix ba
bone when its molecules are situated at the equilibrium
sitions. It is positive if the displacement is outside, and
thickening of the helix occurs in this place. If the displac
ment is directed inside the helix, thenhn is negative. The
second generalized coordinateun describes the azimuthal de
viation of thenth molecule from its equilibrium position, an
bn is the Z coordinate of the displacement. Then the L
grangian of the helix backbone written in terms of these n
variables takes the form
ce
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L5LH dhn

dt
,hn ;

dun
dt

,un ;
dbn

dt
,bnJ 5(

n
H 12 F S dhn

dt D 2

1~11hn!
2S dun

dt D 21S dbn

dt D 2G2(
j
U j~r jn!J , ~37!

where the distancer jn is given by

r jn
2 5~11hn!

21~11hn1 j !
222~11hn!~11hn1 j !

3cos~ jf1un1 j2un!1~ jh1bn1 j2bn!
2. ~38!

The corresponding equations of motion are

d2hn

dt2
5~11hn!S dun

dt D 22(
j

$Wj~r j ,n2 j !@11hn

2~11hn2 j !cos~ jf1un2un2 j !#1Wj~r jn!@11hn

2~11hn1 j !cos~ jf1un1 j2un!#%, ~39!

d2un
dt2

5
1

11hn
H 22

dhn

dt

dun
dt

1(
j

@Wj~r jn!~11hn1 j !

3sin~ jf1un1 j2un!2Wj~r j ,n2 j !~11hn2 j !

3sin~ jf1un2un2 j !#J , ~40!

d2bn

dt2
5(

j
@Wj~r jn!~ jh1bn1 j2bn!2Wj~r j ,n2 j !~ jh1bn

2bn2 j !#. ~41!

We assume that soliton solutions have moving perman
profile, i.e., we puthn5h(nh2st), un5u(nh2st), and
bn5b(nh2st), wheres5v/v0 with v0 being the charac-
teristic sound velocity defined in Sec. III. As illustrated b
Fig. 3, there are three types of waves: one optical and
acoustic modes. Therefore, there is no need to take into
count the dispersion of the optical mode, and therefore
can approximate the first and second time derivatives ofhn
by the simplest spatial difference derivatives as follows:

dhn

dt
52sh8~nh2st!.2s~hn112hn21!/2h,

~42!

d2hn

dt2
5s2h9~nh2st!.s2~hn1122hn1hn21!/h

2.

However, for the longitudinal and torsional displaceme
we need to take into account the dispersion which ari
from the discreteness of the chain backbone. To this end
represent the time derivatives ofun and bn by differences
which additionally contain higher-order spatial differen
derivatives chosen in such a way that they cancel the hig
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expansion terms while passing to the continuum limit. Th
introducing the relative displacementswn5un112un and
rn5bn112bn , we can write

dun
dt

52su8~nh2st!.2sS un112un21

2h

2
un1223un1113un2un21

6h D
5s~un1226un1113un12un21!/6h

5s~wn1125wn22wn21!/6h, ~43!

d2un
dt2

5s2u9~nh2st!.s2S un1122un1un21

h2

2
un1224un1116un24un211un22

12h2 D
52s2~wn11215wn115wn212wn22!/12h

2,

~44!

dbn

dt
.s~bn1226bn1113bn12bn21!/6h

5s~rn1125rn22rn21!/6h, ~45!

d2bn

dt2
5s2b9~nh2st!.2s2~rn11215rn115rn21

1rn22!/12h
2. ~46!

Using the discretized versions~42!–~46!, we derive from
the dynamical equations~39!–~41! the following discrete
equations for the displacementshn , wn , andrn :

F1n[
s2

h2
@hn1122hn1hn212~11hn!~wn1125wn

22wn21!
2/36#1(

j
HWj~r j ,n2 j !F11hn

2~11hn2 j !cosS jf1(
i51

j

wn2 j1 i21D G1Wj~r jn!

3F11hn2~11hn1 j !cosS jf1(
i51

j

wn1 i21D G J 50,

~47!
,
F2n[

s2

12h2
@~11hn!~wn11215wn115wn212wn22!

12~hn112hn21!~wn1125wn22wn21!#

1(
j

FWj~r jn!~11hn1 j !sinS jf1(
i51

j

wn1 i21D
2Wj~r j ,n2 j !~11hn2 j !sinS jf1(

i51

j

wn2 j1 i21D G50,

~48!

s2

12h2
~rn11215rn115rn212rn22!

1(
j

FWj~r jn!S jh1(
i51

j

rn1 i21D 2Wj~r j ,n2 j !

3S jh1(
i51

j

rn2 j1 i21D G50. ~49!

The last equation can be integrated and, as a result,
transformed to

F3n[
s2

12h2
~rn11214rn1rn21!1(

j
(
l51

j

Wj~r j ,n2 j1 l !

3S jh1(
i51

j

rn2 j1 l1 i21D 50. ~50!

The system of the discrete equations~47!, ~48!, and~50!
was solved numerically in the particular case of thea helix
(n53) macromolecule. Our aim was to find only pure so
ton solutions of this system. Each of these solutio
$hn ,wn ,rn%n51

N smoothly depends on the chain siten, and
has zero asymptotics at the chain ends. It is convenien
seek the first approximation of such a solution as a minim
of the functional

F5 1
2 (
n54

N23

~F1n2 1F2n2 1F3n2 !, ~51!

whereN is the number of the chain sites. The problem f
the conditional minimum

F→min: hn5wn5rn50, n51,2,3,N22, N21, N,
~52!

was solved numerically by using the Broyden-Fletch
Goldfarb-Shanno variable metric algorithm@27#. The initial
point was taken in the form of the bell-shaped pulses

hn5An /cosh
2@m~n2N/2!#,

wn5Aw /cosh
2@m~n2N/2!#, ~53!
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rn5Ar /cosh
2@m~n2N/2!#

wherem is an adjustable parameter. It describes the width
the pulse chosen as a starting point for the minimizat
procedure. The parametersAh , Aw , andAr are the ampli-
tudes of this starting pulse. It is necessary to choose
number of sitesN approximately ten times larger than th
width of the solution. In this case, the shape of the solut
will be not affected by the chain ends. We tookN5200, and
this number was appropriate for finding sufficiently bro
soliton solutions.

Since the surface F5F(h4 ,...,hN23 ;
w4 ,...,wN23 ; r4 ,...,rN23) is strongly ravined, the search o
soliton solutions as a minimum of the function~51! leads to
slowly convergent numerical procedure. Therefore the fi
shape of the soliton solution was found as a numerical s
tion of the system of 3(N26) nonlinear equations~47!, ~48!,
and~50! with respect to the variables$hn ,wn ,rn%n54

N23 where
hn5wn5rn50 if n51,2,3,N22,N21,N. A modification
of the Powell hybrid method including the programHYBRD
from the packet of subprogramsMINPACK was used for these
purposes. Each minimum point obtained under solving
minimization problem~52! was used as an initial point in
this method. The necessary condition for the present num
cal scheme to be applied for seeking soliton solutions is t
smooth dependence onn. In the class of such solutions, th
method allows us to find their profiles and determine
region of parameter values where soliton solutions exist.
absence of this type of solutions to the set of Eqs.~47!, ~48!,
and~50! implies the absence of soliton solutions of the ba
system of the equations of motion~16!.

Besides the velocitys, it is convenient to describe three
component soliton solutions$hn ,wn ,rn%n51

N , obtained nu-
merically by solving the system of Eqs.~47!, ~48!, and~50!,
by their energy

E5 (
n54

N23 H s2

8h2 F ~hn112hn21!
21

1

9
~11hn!

2~wn1125wn

22wn21!
21

1

9
~rn1125rn22rn21!

2G1(
j51

3

Uj~r jn!J
~54!

~in this definition, Eqs.~37!, ~42!, ~43!, and ~45! have been
used!, the amplitudes

Ah5 max
1<n<N

hn , Aw5 max
1<n<N

wn , Ar5 min
1<n<N

hn ,

~55!

and the mean-root-square width

L52S (
n51

N

~n2nc!
2rn /RD 1/2, ~56!

where

R5 (
n51

N

rn ~57!

is the total compression of the helix backbone and
f
n

e

n

l
u-

e

ri-
ir

e
e

c

nc5
1
21 (

n51

N

nrn /R ~58!

is the position of the soliton center.

V. NUMERICAL RESULTS

In this section we will numerically find three-compone
soliton solutions, and study their stability properties for t
a-helix backbone with the parameter values~35!. The non-
linearity of the dynamics of thea-helix protein molecules in
the first turn is caused by the anharmonicity of soft hydrog
bonds. Therefore we will take into account only the anh
monicity of the third neighbors (n53), i.e., we takeg1
5g250 andg3.0. Let us find soliton solutions for thre
values of the anharmonicity:g350.1, 1, and 10. The nu
merical solution of systems~47!, ~48!, and ~50! has shown
that at weak anharmonicity~e.g.,g350.1!, there are no soli-
ton solutions, while for the valueg351 the soliton solutions
exist only with velocities in the segment 1,s/sl,1.065. In
this interval of velocities, the solutions have bell-shaped s
ton profiles, smoothly depending on the chain site, as ill
trated by Fig. 4. The dependences of the energyE, width
L, and amplitudesAh , Aw , and Ar of the soliton on its
dimensionless velocitys/sl are given in Table I. As follows

FIG. 4. The three-component profile of the soliton in the he
backbone with the parameter values~35! and the anharmonicities
g15g250 andg351 at the initial instant of timet50 ~dashed
line! and at the final instantt528 062.45 when the soliton ha
passed 100 000 chain sites~solid line!. The initial velocity of the
soliton wass51.05sl .
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TABLE I. Dependence of the energyE, width L, and amplitudesAh , Aw , andAr of the soliton on its velocitys/sl for g351.

s/sl E L Ah Aw Ar

1.01 0.020 26 20.79 0.005 39 0.004 88 20.009 29
1.02 0.057 63 15.19 0.010 62 0.009 63 20.018 30
1.03 0.106 69 11.01 0.015 74 0.014 29 20.027 11
1.04 0.165 57 10.01 0.020 82 0.018 78 20.035 74
1.05 0.233 26 9.61 0.025 76 0.023 27 20.044 17
1.06 0.309 10 9.50 0.030 55 0.027 61 20.052 21
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from Fig. 4, in the region of the localization of the solito
solution, compression of the chain occurs, accompanied
localized thickening and untwisting. The solitons can ex
only in a narrow interval of supersonic velocities. Wh
s→sl , the soliton energy and amplitudes monotonically te
to zero, while the width increases to infinity. With th
growth of the velocity, the energy and absolute values of
amplitudes monotonically increase, whereas the width mo
tonically decreases. For strong anharmonicity, the soliton
a finite supersonic speed spectrum. Thus atg3510 we have
the segment 1,s/sl,1.065. For this case, the dependenc
of the energyE, width L, and amplitudesAh , Aw , andAr

on the velocitys/sl are illustrated by Table II.
The second stage of our numerical studies was the si

lation of the dynamics of the soliton profiles obtained abo
by solving the nonlinear algebraic equations~47!, ~48!, and
~50!. To this end, we considered the dynamics in a fin
chain with fixed ends. The dynamics of such a system
governed by the system of the equations of motion~39!–~41!
with 4<n<N23, whereN is the number of molecules in
the chain. The displacementshn , un , andbn of the mol-
ecules at the chain ends, with the subscriptsn51, 2, 3,
N22, N21, and N are assumed to be fixed. Le
$hn

0,wn
0,rn

0%n51
N be a soliton solution obtained by solving th

system of Eqs.~47!, ~48!, and~50!. Then the soliton center is
found at the (N/2)th chain site, and this solution is used
construct the initial conditions for numerical integration
Eqs. ~39!–~41! as follows. First, we note that in order t
simulate the propagation of the soliton in an infinite cha
instead of the chain consisting ofN sites, we choose the
initial conditions in the ‘‘prolonged’’ chain, which contain
2N sites, according to the relations

hn~0!5hn
0, n51,...,N, hn~0!5hN

0 , n5N11,...,2N,

u1~0!50, un11~0!5un~0!1wn
0, n51,...,N,

un~0!5uN11~0!, n5N12,...,2N,
y
t

d

e
o-
as

s

u-
e

is

,

b1~0!, bn11~0!5bn~0!1rn
0, n51,...,N,

bn~0!5bN11~0!, n5N12,...,2N,

hn8~0!52s@hn11~0!2hn21~0!#/2h,

un8~0!52s@un11~0!2un21~0!#/2h,

bn8~0!52s@bn11~0!2bn21~0!#/2h, n54,...,2N23,
~59!

h j85u j85b j85h2N2 j8 5u2N2 j8 5b2N2 j8 50, j51,2,3;

where the prime denotes the differentiation with respec
the dimensionless timet. Next we shift the soliton profile
back by N sites just when it passesN sites, i.e., when
b3N/2(t) becomes greater thanbN/2(0); we accomplish the
substitutions

hN1n~t!5hn~t!, uN1n~t!5un~t!, bN1n~t!5bn~t!,

hN1n8 ~t!5hn8~t!, uN1n8 ~t!5un8~t!,

bN1n8 ~t!5bn8~t!, n51,...,N,

hn~t!5h2N~0!, un~t!5u2N~0!, bn~t!5b2N~0!,

hn8~t!50, un8~t!50, bn8~t!50, n5N11,...,2N.
~60!

After each such shift, we compare the current soliton pro
with its initial shape. To this end, we define the ‘‘distance
function

d~t!512 1
3 @ASh~t!/Rh1ASw~t!/Rw1ASr~t!/Rr#,

~61!

where
TABLE II. Dependence of the energyE, width L, and amplitudesAh , Aw , andAr on the velocitys/sl for g3510.

s/sl E L Ah Aw Ar

1.01 0.000 22 20.82 0.000 57 0.000 51 20.000 97
1.02 0.000 64 15.23 0.001 14 0.001 00 20.001 92
1.03 0.001 18 12.61 0.001 70 0.001 48 20.002 84
1.04 0.001 83 11.05 0.002 26 0.001 95 20.003 74
1.05 0.002 57 10.06 0.002 81 0.002 41 20.004 64
1.06 0.003 41 9.58 0.003 36 0.002 86 20.005 51
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Sh~t!5 (
n51

2N

@hn~t!2hn~0!#2,

Sw~t!5 (
n51

2N21

@wn~t!2wn~0!#2,

Sr~t!5 (
n51

2N21

@rn~t!2rn~0!#2,

Rh5 (
n51

2N

hn
2~0!, Rw5 (

n51

2N21

wn
2~0!, Rr5 (

n51

2N21

rn
2~0!.

~62!

Function~61! allows us to estimate the change of the solit
shape. When the current and initial profiles coincide p
fectly, thend51. Otherwise,d,1.

We have studied the soliton dynamics in the chain c
sisting ofN5100 molecules with the parameters~35! when
g15g250 and g351. When the initial speed wass/sl
51.05 (s53.5645), then the soliton passed 100 000 ch
sites during the timet528 062.45, and this propagation co
responds to the velocitys5100 000/t53.563551.0497sl .
As can be seen from Fig. 4, the soliton shape at the fi
instant of time practically coincides with the initial profile
The change of the soliton shape in time, described by
functiond5d(t) @see Eqs.~61! and~62!#, is given in Fig. 5.
Its behavior demonstrates small oscillations around the m
value d̄50.985. The nonsmooth behavior of the distan
d(t) appears due to incommensurateness of the velocit
motion with the value of the discrete step of integrati
Dt. The system of the equations of motion~39!–~41! was
integrated by the fourth-order Runge-Kutta method with
constant step of integrationDt50.02. The discreteness o
time does not allow us exactly to find an instant of tim
when the soliton has passed exactly 200 chain sites. Th
fore some small shifts of the soliton center occur and, a
result, small-amplitude oscillations appear in the funct
d(t). Simulations of the equations of motion have sho

FIG. 5. Dependence of the functiond, describing the change o
the soliton shape, on timet for the soliton with the initial velocity
s51.05sl in the helix chain with the same parameter values as
Fig. 4.
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that the numerical procedure of looking for soliton solutio
gives correct soliton profiles, and solitons themselves are
namically stable.

Consider now the head-in collision of the solitons. T
simulations have shown that for velocities close to the sp
of longitudinal sound, the collision of solitons occurs prac
cally elastically without emission of small-amplitude wav
~see Fig. 6!. However, for higher velocities, close to the u
per edge of the segment of admissible velocities~‘‘velocity
spectrum’’!, the interaction of solitons becomes inelast
The collision leads to the emission of small-amplitude wav
as illustrated by Fig. 7.

In finite a-helix chains, the solitons can be created at
ends of the chain. Therefore, we have considered the dyn
ics of the chain when it is initially compressed at one of t
ends. To this end, for the simulations of Eqs.~39!–~41!, we
have chosen the following initial conditions:

hn~0!50, hn8~0!50, un~0!50, un8~0!50,

bn8~0!50, n51,...,N; ~63!

b1~0!5b2~0!5b3~0!5A, bn~0!50, n54,...,N.

HereA.0 is the amplitude of the initial compression at th
first three chain sites of the left end, andN52000 is the total
number of sites chosen for the simulations. Again, we ta
g15g250 andg3.0. The simulations have shown that, fo
the weak anharmonicityg350.1, the initial compression o
the chain leads only to the appearance of an oscillating w
packet propagating with subsonic velocities. Supersonic s

n

FIG. 6. Elastic collision of the solitons in the chain backbo
with the same parameter values as in Fig. 4. Both the solit
propagate with the velocitys51.01sl53.4287.
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56 887SOLITONS IN AN ISOLATED HELIX CHAIN
tons are not formed, and their absence is in accordance
the result obtained above for the backbone with weak an
monicity. In the case with middle anharmonicity, the co
pression with the amplitudesA50.1 and 0.2 also resulted i
the appearance of a subsonic wave packet. However,
compression with larger amplitudes also resulted in the
pearance of a supersonic soliton. Thus, forA50.3, the soli-
ton had the velocitys/sl51.031 and forA50.4, the velocity
was s51.049. For the stronger anharmonicity,g3510, the
compression with the amplitudeA50.05 resulted in the for-
mation of a supersonic soliton with the velocitys/sl
51.066~see Fig. 8!. The presence of the two sound veloc
tiesst andsl leads to the appearance of two oscillating wa
packets ~torsional and longitudinal waves, respectivel!
which are clearly seen in Fig. 8. The compression with
larger amplitudeA50.1 leads to the formation of the solito
like supersonic pulse with the velocitys/sl51.175~see Fig.
9!. This value of the velocity is outside the soliton veloci
spectrum. Therefore the motion of such a soliton is acco
panied by the continuous emission of small-amplitude wa
~phonons!. In an infinite chain, such emission should res
in decreasing the soliton velocity, approaching the up
edge of the soliton velocity spectrum; however, in a fin
chain, the soliton has no time to throw down its veloci
Thus these simulations of the time evolution of a narr
initial pulse have confirmed our conclusions drawn above
the finiteness of the supersonic soliton velocity spectrum
one side, and the absence of soliton solutions for weak
harmonicity on the other side.

Finally, we note that the accuracy of the numerical in

FIG. 7. Inelastic collision of the solitons in the backbone w
the same parameter values as in Fig. 4. The initial velocity of
solitons iss51.05sl53.5645.
ith
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gration of Eqs.~39!–~41! was estimated through the conse
vation of the integral of the total energy@see Eq.~37!#

H5 (
n54

N23 H 12 F S dhn

dt D 21~11hn!
2S dun

dt D 21S dbn

dt D 2G
1(

j
U j~r jn!J . ~64!

The value of the integration stepDt50.02, used in the
present paper, ensured the conservation of integral~64! with
an accuracy up to six digits during the whole time of th
numerical integration.

VI. CONCLUSION AND DISCUSSIONS

It was an attractive point of view to study the transport o
vibrational energy in biopolymers such as protein on the b

e

FIG. 8. Formation of the supersonic soliton and of two wav
packets in the helix backbone under the initial (t50) compression
of the three bonds at its left end. The parameters of the backb
are given by Eqs.~35!, g15g250, andg3510. The amplitude of
the initial compression isA50.05. The distribution of the longitu-
dinal relative displacementsrn’s along the helix chain is plotted at
the instantt5500.

FIG. 9. Formation of the supersonic soliton emitting sma
amplitude waves and of two wave packets in the helix backbo
with the same parameter values as in Fig. 8 under the initialt
50) compression of the left end bonds. The amplitude of the init
compression isA50.1. The distribution of the longitudinal relative
displacementsrn’s along the chain is given att5400.
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sis of 1D nonlinear lattice models. The first attempt in th
direction was formulated by Davydov with co-workers~see
the Refs.@5# and @6#, and references therein! who suggested
that the intramolecular vibrational amide-I mode could be
self-trapped through its interaction with deformation in t
protein structure. Further, Davydov and co-workers@28,29#
and Scott @30# generalized this theory by taking dipole
dipole coupling between the three spines into account. W
the Davydov model and the related models~the Takeno
model @31# should also be mentioned! considered intramo-
lecular modes, Yomosa@8# modeled the energy transfer i
protein, essentially applying the Fermi-Pasta-Ulam mod
The present paper also focuses only on the large-ampli
supersonic lattice solitons, so that we do not consider
intramolecular modes. All intermolecular~or interatomic! in-
teractions in our model are represented by pair central for
However, in order somehow to stabilize a chain backbo
and to fix a single ground state, except for the near
neighboring interactions, we should take into account so
additional intermolecular forces, including next or more
mote neighbors. As a result, the latter forces in biology fo
secondary structure, i.e., some regular spatial configura
of the chain. In the simplest case, such a configuration
naturally the form of a so-called 310 helix. Therefore Olsen
Lomdahl, and Kerr@10# considered two types of intermo
lecular forces: between the first neighbors and between
nearest neighbors along the longitudinal direction. In orde
have a completely stabilized helix backbone in the 3D spa
we incorporated in the helix model a third type of interm
lecular forces, namely, between the second neighbors.
instance, in the case of the 310-helix backbone, our mode
contains the first-, second-, and third-neighboring interm
lecular forces. Alternatively, instead of this coupling, a thre
body force, which fixes the valence anglec, could be con-
sidered. Any of these force constraints is sufficient for
helix backbone to have a single ground state. In this pa
we restricted ourselves to the case when the chain molec
are coupled only through central forces of spherical symm
try. Given in terms of valence bonds, the helix Hamiltoni
becomes more complicated. Therefore the Hamiltonian~15!
may be considered as the most simple 3D generalizatio
the 1D FPU chain.

Thus, in the present paper the standard 1D FPU mode
been generalized to the three spatial dimensions when
chain molecule is allowed to have three degrees of freed
The resulting geometric structure is a helix backbone w
n>3 spines. Three-component nontopological solitons h
been shown to exist and propagate with supersonic veloc
in the helix backbone with any number of spines. Simila
to the 1D case, for the existence of the soliton solutions,
presence of anharmonicity, at least, in the longitudinal~hy-
drogen! bonds connecting eachnth and (n1n)th molecules,
is a necessary condition. However, compared to the 1D F
model, the existence of stable soliton solutions in the
helix backbone appears to be more limited. First, they exis
the anharmonicity of then-neighboring forces~longitudinal
bonds! is sufficiently strong. Second, the segment of adm
sible ~supersonic! velocities of solitons is always finite. It is
quite narrow and for all velocities from this segment, and
soliton propagation is uniform, retaining velocity and profi
However, when the solitons collide, their behavior after c
le
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lision depends on velocity. At the lower edge of the segm
~soliton velocity spectrum!, the soliton collision is elastic
whereas, for higher velocities, at the upper edge the solit
collide inelastically with the radiation of small-amplitud
waves. Summarizing, we conclude that in a 3D isolated h
backbone the three-component solitons, describing su
sonic pulses of longitudinal backbone compression, still e
as dynamically stable objects. However, the range of th
existence is more limited if compared to the 1D FPU lattic

Since the present paper focuses mainly on the problem
how to find pure soliton solutions, in order to check th
stability of the soliton solutions obtained under the minim
zation procedure, as well as to demonstrate the accurac
the method for seeking these solutions, we performed
merical simulations of waves traveling over 100 000 ch
sites. Of course, it is very rare for realistic biological macr
molecules to beuniformover such long lengths. Thus a pro
tein which consists of amino acids should be modeled b
chain with mass variation. We performed numerical simu
tions of the time evolution of the lattice solitons in the 1
FPU chain with randomly distributed masses, and found t
their propagation through disordered segment is, in gene
unstable. Thus, if the mass impurity is sufficiently sma
then emission of small-amplitude waves occurs when
soliton passes through the impurity. For larger impuriti
splitting the soliton, for instance, into two solitons, one
these reflects the impurity. If the impurity is very large, th
inelastic reflection of the soliton takes place. Assuming
soliton to be incident on a disordered segment of the ch
embedded between two homogeneous semi-infinite cha
the transmission coefficient of the soliton energy could
calculated. In the 1D case, this problem was solved num
cally in Ref. @32#.

We do not expect that the 1D results will change crucia
for the helix chain. At least, they should be similar at t
lower edge of the soliton velocity spectrum where the soli
profile is broad. However, in any case we have energy l
and eventually soliton breaking. The scattering of the latt
solitons on mass impurities is due to their high~supersonic!
velocities. Slow solitons such as envelope solitons or to
logical defects are much more stable with respect to imp
ties. Therefore, from the point of view of ‘‘soliton transpa
ency’’ in real biological macromolecules, the Davydov-Sc
self-trapping mechanism seems to be much more promis
as Davydov’s soliton does not loose energy at all, at least
sufficiently small velocities@33#. However, it should be
noted that the helix part of the Davydov-Scott ‘‘excito
helix’’ model @28–30,34,35# is simplified because only lon
gitudinal displacements of the chain molecules are con
ered. Though transverse displacements along the ra
directions of the helix backbone can be taken into acco
@29#, nevertheless the model is still one-dimensional beca
the intermolecular interactions are considered only in
longitudinal direction. The coupling between the spines
incorporated only through a semiclassical term, namely,
transverse dipole-dipole interaction energy between
nearest-neighbor amino acids. It is important to note that
the basis of this oversimplified exciton-helix model, the n
merical calculations by Scott and co-workers@30,34,35# dis-
covered the threshold of the exciton-phonon coupling
formation of the soliton states in protein, while, in the co
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56 889SOLITONS IN AN ISOLATED HELIX CHAIN
responding single chain, the self-trapping occurs at any va
of this coupling. Therefore it is not obvious what happe
with the intramolecular mode when the lattice~helix! sub-
system is completed properly, as described in this pa
From this point of view, the present work may be conside
as a first step to study more carefully the Davydov-Sc
exciton-helix model. Therefore the numerical simulatio
performed by Scott and co-workers@30,34,35# should be ex-
tended to the case when the helix part of the Hamiltonia
given by Eq. ~10!. Moreover, since the helix subsyste
changes significantly~three degrees of freedom for the cha
molecule motions and three types of intermolecular inter
tions are involved!, the corresponding Langevin equatio
will essentially differ from those used by Lomdahl and Ke
@36#. Therefore their results on the thermal stability of Dav
dov’s soliton should be revised in the ‘‘complete’’ excito
helix model. Thus, semiclassical investigations in the sp
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of Refs.@30, 34, 35#, on one hand, and numerical simulatio
similar to those of Lomdahl and Kerr@36# and Lawrence
et al. @37#, on the other hand, are of great importance in
future.
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